9Cr ODS Material Development

T.S. Byun
Oak Ridge National Laboratory
Materials Science and Technology Division

Presented in Webinar on July 31, 2013

Acknowledgement & Contents

- DOE/FC R&D Core Materials (led by S.A. Maloy of LANL)
- I-NERI Collaboration (US-Korea) for Developing 9Cr NFA with High Toughness/Third (last) Yr
- T.S. Byun & D.T. Hoelzer (ORNL)/J.H. Yoon (KAERI)
 - Low toughness issue in high strength NFAs (Advanced ODS Steels)
 - Proposed approach for toughening Fe-9Cr NFAs
 - Integration of process technologies for high toughness NFAs
 - Microstructural characteristics & stability of developed materials
 - > High temperature mechanical properties
 - Summary & further studies

High Temp. Fracture Process & Toughness

Microcracks propagate along grain boundaries without significant deformation: Low energy GB decohesion results in low fracture toughness.

Application to reactor core components requires high toughness for both irradiation performance & manufacturing process:

- Low DBTT shift; resistance to radiation-induced embrittlement
- · High irradiation & thermal creep strength; high swelling resistance
- Deformability & cracking resistance for tube drawing and forming processes

Approach for Toughening NFAs: Modification of Grain Boundary

Designed to enhance diffusion bonding at grain boundaries:

- I. Partial phase transformation (intercritical annealing)
- II. Partial phase transformation along with plastic deformation (controlled rolling)

- Erase/modify weak grain & aggregate boundaries for higher bonding.
- Diffusion is greatly enhanced with partial phase transformation, and further enhanced by plastic deformation.

Heating to an austenite (γ) temperature and cooling after partial $\alpha \rightarrow \gamma$ transformation.

Process Technology: Production of Base Materials (NFA 9YWTVs)

Two alloy power heats (8 kg each) have been produced by gas atomization process at ATI Powder Metals:

Fe-9Cr-2W-0.4Ti-0.2V-0.12C+0.3Y₂O₃ & Fe-9Cr-2W-0.4Ti-0.2V-0.05C+0.3Y₂O₃

Ball milling for 40 hours in Zoz CM08 machine (6 loads)/ Canned & degassed (6 cans, 920g each)

Extrusion below 850°C & Cut into 4 inch long coupons

Characterization

Nuclear Energy

- Post-Extrusion TMT **Optimization**
- Micro & High T. Mechanical Characterization
- Feedbacks for new processing

Base Materials: NFA 9YWTV-PM1 & PM2

Chromium (ferrite stabilizer) equivalent of NFAs:

- 14YWT (17%)
- 9YWTV-PM1 (10%)
- 9YWTV-PM2 (11.7%)

*α to γ transformation needs Cr-eq < ~12%

9YWTV-PM1 Fe-9Cr-2W-0.4Ti-0.2V-0.12C-0.3Y₂O₃

9YWTV-PM2

Fe-9Cr-2W-0.4Ti-0.2V-0.05C+0.3Y₂O₃

Base Materials: Strength & Ductility of 9YWTVs & 14YWT

- New base NFAs retain YS higher than 500 MPa at 700°C.
- Improved ductility is measured for both new NFAs.

Process Development & Optimization: Isothermal Annealing (IA)

Servohydraulic testing system (MTS 858 table top model) equipped with high vacuum (10⁻⁷ torr), high temperature (1000°C) furnace (Oxy-Gon, custom model, Ta heating elements)

Mini tensile (SS3) and fracture (TPB & DCT) specimens

Process Development & Optimization: Controlled Rolling (CR)

• The as-extruded coupons were hot-rolled in controlled conditions: at 900 – 1000°C for 20 or 50% total thickness reduction.

Production of 9Cr NFAs

- 1st Production: 9YWTV-PM1 & PM2
- About 6 kg total
- Consumed for basic property examination and major mechanical properties

- 2nd Production: 9YWTV-PM2 only
- About 3 kg total
- Consumed for major mechanical property tests
- Further studies

Process Development & Optimization: TMT Matrix

□ 9YWTV PM1: Fe(bal.)-9Cr-2W-0.4Ti-0.2V-0.12C

□ 9YWTV PM2: Fe(bal.)-9Cr-2W-0.4Ti-0.2V-0.05C

Isothermal (Intercritical) Annealing (IA)

Annealing Time/Temp.	30 or 60 min	200 min	20 hr
830 °C	0	0	
850 °C	0	0	0
875 °C	0	0	
900 °C	0	0	
950 °C	0	0	
975 °C	0		

Controlled Rolling (CR) with IA

Rolling Strain/Temp.	20%	50%	Remark (Bend Bar)
900 °C	0	0	L-T/T-L
925 °C		0	L-T
950 °C		0	L-T
975 °C		0	L-T
1000 °C		0	L-T

EBSD Images of 9Cr NFAs (PM2) after CR

▶ Relatively equiaxial in A; higher aspect ratio in B, RD//110 grains dominant

CAK RIDGE

Grain Size of 9Cr NFAs (PM2) after CR

(Equivalent Circular Diameter)

- Grains after 900C rolling are slightly larger and have are more equiaxial.
- Grains grow from 100 300 nm in as-extruded condition to 300 900 nm after CR.

High Temp. Fracture Test Data Effect of IA in 9YWTV-PM1

- Small change of strength is observed after annealing at 975°C.
- No evidence of fracture toughness improvement is found in annealed 9YWTV-PM1 except for the 975°C annealed specimen tested at 500°C.

High Temp. Fracture Test Data Effect of IA in 9YWTV-PM2

> Fracture toughness is improved in 9YWTV-PM2 by intercritical annealing, but further improvement is desirable especially at high temperatures.

High Temp. Fracture Test Data Effect of CR in 9YWTV-PM1

High Temp. Fracture Test Data Effect of CR in 9YWTV-PM2

Uniaxial Tensile Curves Effect of CR in 9YWTV-PM1 & PM2

Eng. Strain (%)

High Temp. Crack Resistance Test Effect of CR in 9YWTV-PM2

- Improvement of fracture toughness in controlled rolled 9YWTV-PM2 is significant.
- The 9YWTV-PM2 controlled rolled at 900°C resulted in the best fracture toughness among NFAs, which is as high as those of non-ODS F/M steels.

800 > TMT condition is selected for detailed characterization and further studies: 900°C 50%R.

Effect of CR on Fracture Mechanism in 9YWTV-PM2

Nuclear Energy

> A change in high T fracture mechanism from boundary decohesion to formation of flake-like shear tongues,

OAK RIDGE

Issue in Process Development: Microstructural Characterization by In-Situ X-Ray

Volume fractions of FCC phase (red) and BCC phase (blue) in 9YWTV-PM1 (left) and in 9YWTV-PM2 (right) after heat-treatment at 1000°C

- The volume fraction of FCC in 9YWTV-PM1 gradually increases with time up to about 65%, while that in 9YWTV-PM2 appears to saturate at about 5%.
- This sluggish phase transformation in PM2 might be due to the early depletion of carbon content in ferrite, which is a strong austenite former.
- Detection accuracy is low with these nanostructured materials.

Summary & Further Studies

- 1) Very high strength can be achieved in NFAs at the expense of fracture toughness and ductility. Low energy decohesion at boundaries causes poor fracture resistance at high temperatures.
- 2) Isothermal annealing & controlled hot-rolling were used to strengthen the powder-metallurgy produced weak boundaries by enhanced diffusion bonding.
- 3) Improvement of fracture toughness in controlled rolled 9YWTV-PM2 was significant: fracture toughness was as high as those of non-ODS F/M steels.
- 4) In particular, the 9YWTV-PM2 controlled-rolled at 900°C resulted in the best fracture toughness among NFAs (> 150 MPa√m over RT 700°C). High toughness (engineering grade) NFA has been developed.
- 5) Detailed characterization & further studies on selected materials need to be done: (a) delayed phase transformation, (b) stability of nanoclusters, (c) grain growth, (d) irradiation experiments of the base 9Cr NFAs and high toughness NFAs, and (e) testing in thin-walled tube form.

